Tales de Mileto Tales de Mileto (en griego Θαλῆς ὁ Μιλήσιος) (h. 639 - h. 547/6 a. C.[1] ) fue el iniciador de la indagación racional sobre el universo. Se le considera el primer filósofo de la historia, y el fundador de la escuela jonia de filosofía, según el testimonio de Aristóteles. Fue el primero y más famoso de los Siete Sabios de Grecia (el sabio astrónomo), y habría tenido, según una tradición antigua no muy segura, como discípulo y protegido a Pitágoras. Fue además uno de los más grandes astrónomos y matemáticos de su época.
Sus estudios abarcaron profundamente el área de la geometría, álgebra lineal, geometría del espacio y algunas ramas de la física, tales como la estática, la dinámica y la óptica. Su vida está envuelta en un halo de leyenda. Fue el primer filósofo jónico.
Euclides Euclides (en griego Ευκλείδης, Eukleides) fue un matemático y geómetra griego, que vivió alrededor del 300 a.C. (ca. 325 - ca. 265 a. C.). Se le conoce como "El Padre de la Geometría". Su vida es poco conocida, salvo que vivió en Alejandría (Egipto) durante el reinado de Ptolomeo I. Ciertos autores árabes afirman que Euclides era hijo de Naucrates y se barajan tres hipótesis:
1.Euclides fue un personaje matematico histórico que escribió Los elementos y otras obras atribuidas a él. 2.Euclides fue el líder de un equipo de matemáticos que trabajaba en Alejandría. Todos ellos contribuyeron a escribir las obras completas de Euclides, incluso firmando los libros con el nombre de Euclides después de su muerte. 3.Las obras completas de Euclides fueron escritas por un equipo de matemáticos de Alejandría quienes tomaron el nombre Euclides del personaje histórico Euclides de Megara, que había vivido unos cien años antes. Proclo, el último de los grandes filósofos griegos, quien vivió alrededor del 450, escribió importantes comentarios sobre el libro I de los Elementos, dichos comentarios constituyen una valiosa fuente de información sobre la historia de la matemática griega. Así sabemos, por ejemplo, que Euclides reunió aportes de Eudoxo en relación a la teoría de la proporción y de Teeteto sobre los poliedros regulares.
Pitágoras Pitágoras de Samos (aproximadamente 582 a. C. - 507 a. C., en griego: Πυθαγόρας ο Σάμιος) fue un filósofo y matemático griego, famoso sobre todo por el Teorema de Pitágoras, que en realidad pertenece a la escuela pitagórica y no sólo al mismo Pitágoras. Afirmaba que todo es matemáticas, y estudió y clasificó los números. Pitágoras nació en la isla de Samos en el año 582 a. C. Siendo muy joven viajó a Mesopotamia y Egipto (también, fue enviado por su tío, Zoilo, a Mitilene a estudiar con Ferécides de Siros y tal vez con su padre, Badio de Siros). Tras regresar a Samos, finalizó sus estudios, según Diógenes Laercio con Hermodamas de Samos y luego fundó su primera escuela durante la tiranía de Polícrates. Abandonó Samos para escapar de la tiranía de Polícrates y se estableció en la Magna Grecia, en Crotona alrededor del 525 a. C., en el sur de Italia, donde fundó su segunda escuela. Las doctrinas de este centro cultural eran regidas por reglas muy estrictas de conducta.
Biografia Teorema de Pitagoras
Arquímedes Arquímedes de Siracusa (en griego antiguo Ἀρχιμήδης) (c. 287 a. C. – c. 212 a. C.) fue un matemático griego, físico, ingeniero, inventor y astrónomo. Aunque se conocen pocos detalles de su vida, es considerado uno de los científicos más importantes de la antigüedad clásica. Entre sus avances en física se encuentran sus fundamentos en hidrostática, estática y la explicación del principio de la palanca. Es reconocido por haber diseñado innovadoras máquinas, incluyendo armas de asedio y el tornillo de Arquímedes, que lleva su nombre. Experimentos modernos han probado las afirmaciones de que Arquímedes llegó a diseñar máquinas capaces de sacar barcos enemigos del agua o prenderles fuego utilizando una serie de espejos.
Generalmente, se considera a Arquímedes como el matemático más grande de la antigüedad, y uno de los más grandes de la historia. Usó el método de exhausción para calcular el área bajo el arco de una parábola con el sumatorio de una serie infinita, y dio una aproximación extremadamente precisa del número Pi.También definió la espiral que lleva su nombre, fórmulas para los volúmenes de las superficies de revolución y un ingenioso sistema para expresar números muy largos.
Arquímedes murió durante el sitio de Siracusa (214–212 a. C.), cuando fue asesinado por un soldado romano, a pesar de que existían órdenes de que no se le hiciese ningún daño.
A diferencia de sus inventos, los escritos matemáticos de Arquímedes no fueron muy conocidos en la antigüedad. Los matemáticos de Alejandría lo leyeron y lo citaron, pero la primera compilación integral de su obra no fue realizada hasta c. 530 d. C. por Isidoro de Mileto. Los comentarios de las obras de Arquímedes escritas por Eutocio en el siglo VI las abrieron por primera vez a un público más amplio. Las relativamente pocas copias de trabajos escritos de Arquímedes que sobrevivieron a través de la Edad Media fueron una importante fuente de ideas durante el Renacimiento,mientras que el descubrimiento en 1906 de trabajos desconocidos de Arquímedes en el Palimpsesto de Arquímedes ha ayudado a comprender cómo obtuvo sus resultados matemáticos.
A continuacion le presentamos una coleccion de 7 videos que trata sobre la historia del número uno.
Biografia de Matematicos
Nikolái Lobachevski Nikolái Aroche Ivánovich Lobachevski (1 de diciembre de 1792 - 24 de febrero de 1856) fue un matemático ruso del siglo XIX. Entre los principales logros del tambien conocido por sus colegas como Arochexchivitki, se encuentra la demostración de varias conjeturas relacionadas con el cálculo tensorial aplicados a vectores en el espacio de Hilbert. Fue uno de los primeros en aplicar un tratamiento crítico a los postulados fundamentales de la Geometría euclidiana. Nació en Nižni Nóvgorod-aroche y estudió en la Universidad de Kazán. Enseñó en Kazán desde 1812 hasta 1846, llegando a ser profesor de matemáticas en 1823. Con independencia del húngaro János Bolyai y del alemán Carl Friedrich Gauss, Lobachevski descubrió un sistema de geometría no euclidiana. Antes de Lobachesvski los matemáticos intentaban deducir el quinto postulado de Euclides a partir de los otros axiomas ; sin embargo Lobachevsky se dedicó a desarrollar una geometría en la cual el quinto postulado puede no ser cierto, o mejor dicho, no ser válido, para esto entre otras cuestiones propuso un sistema geométrico basado en la hipótesis del ángulo agudo según la cual en un plano, por un punto fijo pasan al menos 2 paralelas a una recta -en realidad tal solución da noción de la existencia de triángulos curvos. Entre sus obras destacan Sobre los principios de la geometría (1829) y Geometría imaginaria (1835). Murió en Kazán en 1856. De Wikipedia enciclopedia libre
Georg Cantor
El matemático alemán Georg Cantor Georg Cantor (nacio. San Petersburgo, 3 de marzo de 1845, murio. Halle, 6 de enero de 1918 ) fue un matemático alemán, inventor con Dedekind y Frege de la teoría de conjuntos, que es la base de las matemáticas modernas. Gracias a sus atrevidas investigaciones sobre los conjuntos infinitos fue el primero capaz de formalizar la noción de infinito bajo la forma de los números transfinitos (cardinales y ordinales). Cantor descubrió que los conjuntos infinitos no tienen siempre el mismo tamaño, o sea el mismo cardinal: por ejemplo, el conjunto de los racionales es enumerable, es decir, del mismo tamaño que el conjunto de los naturales, mientras que el de los reales no lo es: existen, por lo tanto, varios infinitos, más grandes los unos que los otros. Entre estos infinitos, los hay tan grandes que no tienen correspondencia en el mundo real, asimilado al espacio vectorial R³. Este hecho supuso un desafío para un espíritu tan religioso como el de Georg Cantor. Y las acusaciones de blasfemia por parte de ciertos colegas envidiosos o que no entendían sus descubrimientos no le ayudaron. Sufrió de depresión, y fue internado repetidas veces en hospitales psiquiátricos. Su mente luchaba contra varias paradojas de la teoría de los conjuntos, que parecían invalidar toda su teoría (hacerla inconsistente o contradictoria, en el sentido de que una cierta propiedad podría ser a la vez cierta y falsa). Además, trató durante muchos años de probar la hipótesis del continuo, lo que se sabe hoy que es imposible, y que tiene que ser aceptada (o rehusada) como axioma adicional de la teoría. El constructivismo negará este axioma, entre otras cosas, desarrollando toda una teoría matemática alternativa a la matemática moderna. Empezó a interpretar el infinito absoluto (que no es concebible por la mente humana) como Dios, y escribió artículos religiosos sobre el tema. Hoy en día, la comunidad matemática reconoce plenamente su trabajo, y admite que significa un salto cualitativo importante en el raciocinio lógico. Murió en una clínica psiquiátrica de monjas, aquejado de una enfermedad maníaco-depresiva (la cual se le atribuye a su edad). Fuente: http://es.wikipedia.org/wiki/Georg_Cantor
Evaristo Galois
Évariste Galois (25 de octubre de 1811 - 31 de mayo de 1832) fue un joven matemático francés nacido en Bourg-la-Reine. Mientras aún era un adolescente, fue capaz de determinar la condición necesaria y suficiente para que un polinomio sea resuelto por radicales, dando una solución a un problema que había permanecido insoluble. Su trabajo ofreció las bases fundamentales para la teoría que lleva su nombre, una rama principal del álgebra abstracta. Fue el primero en utilizar el término "grupo" en un contexto matemático. La teoría constituye una de la bases matemáticas de la modulación CDMA utilizada en comunicaciones y, especialmente, en los Sistemas de navegación por satélite, como GPS, GLONASS, etc.
Niels Henrik Abel
Niels Henrik Abel (Findö, Noruega, 5 de agosto de 1802 - Froland, Noruega, 16 de abril de 1829) fue un matemático noruego. Es célebre fundamentalmente por haber probado en 1824 que no hay ninguna fórmula para hallar los ceros de todos los polinomios generales de grados en términos de sus coeficientes y en el de las funciones elípticas, ámbito en el que desarrolló un método general para la construcción de funciones periódicas recíprocas de la integral elíptica.
En 1815 ingresó en la escuela de la Catedral de Cristianía (hoy Oslo) en donde tres años después probaría sus aptitudes para las matemáticas con sus brillantes soluciones a los problemas originales propuestos por Bernt Holmboe. En esa misma época, su padre, un pastor protestante pobre, murió y su familia sufrió graves penurias económicas; sin embargo, una pequeña beca del Estado permitió a Abel ingresar en la Universidad de Cristianía en 1821.
Niels Henrik Abel. El primer trabajo relevante de Abel consistió en demostrar la imposibilidad de resolver las ecuaciones de quinto grado usando raíces (véase el Teorema de Abel-Ruffini). Fue esta, en 1824 su primera investigación publicada, aunque la demostración era difícil y abstrusa. Posteriormente se publicó de modo más elaborado en el primer volumen del Diario de Crelle.
La financiación estatal le permitió visitar Alemania y Francia en 1825. Abel conoció al astrónomo Schumacher (1780-1850) en Altona cerca de Hamburgo cuando residió seis meses en Berlín, en donde colaboró en la elaboración para su publicación del diario matemático de August Leopold Crelle. Este proyecto fue respaldado con entusiasmo por Abel, que fue en gran parte responsable del éxito de la iniciativa. De Berlín se trasladó a Friburgo en donde llevó a cabo su brillante investigación sobre la teoría de las funciones, en la que estudió sobre todo la elíptica y la hiperelíptica, e introduciendo un nuevo tipo de funciones que hoy se conocen como funciones abelianas, y que fueron objeto de un profundo estudio por su parte. En 1826 Abel viajó a París, permaneciendo allí unos diez meses; allí conoció a los matemáticos franceses más importantes, aunque ni él ni su trabajo (poco conocido) fueron especialmente valorados. A ello contribuyó también su modestia, que lo llevó a no hacer públicos los resultados de sus investigaciones. Los problemas económicos, que nunca se separaron de él, llevaron a Abel a interrumpir su viaje para regresar a Noruega, en donde trabajó como profesor (en Cristianía) durante algún tiempo. A principios de abril de 1829 Crelle le ayudó a obtener un trabajo en Berlín, pero la oferta llegó a Noruega dos días después de su muerte, a causa de una tuberculosis.
La prematura muerte, a los 27 años, de este genio de las matemáticas terminó con una brillante y prometedora carrera. Sus investigaciones aclararon algunos de los aspectos más oscuros del análisis y abrieron nuevos campos de estudio, posibilitando numerosas ramificaciones en el conocimiento matemático y alcanzando un notable progreso. La parte más profunda y original del trabajo de Abel se publicó en el Diario de Crelle del que era editor Holmboe. Una edición más completa de sus trabajos se publicó en 1881 por parte de Ludwing Sylow y Sophus Lie. El adjetivo abeliano, que se ha popularizado en los escritos matemáticos deriva de su nombre y suele indicarse en minúsculas (ver grupo abeliano, categoría abeliana o variedad abeliana).
En el año 1964, se decidió en su honor llamarle «Abel» a un cráter de impacto lunar.[1] En el año 2002 se instituyó en su honor el prestigioso premio Abel, el cual se otorga cada año a los matemáticos más destacados. De Wikipedia enciclopedia libre
Matematicos en la Historia
La Historia de la Matemática es un área de estudio que abarca las investigaciones sobre los orígenes de los descubrimientos en matemáticas y, en menor grado, de los métodos matemáticos y la notación.
Antes de la edad moderna y la difusión del conocimiento a lo largo del mundo, los ejemplos escritos de nuevos desarrollos matemáticos salían a la luz sólo en unos pocos escenarios. Los textos matemáticos más antiguos disponibles son el Plimpton 322 (matemáticas en Babilonia c. 1900 a. C.), el papiro de Moscú (matemáticas en el Antiguo Egipto c. 1850 a. C.), el papiro de Rhind (Matemáticas en Egipto c. 1650 a. C.), y el Shulba Sutras (Matemáticas en la India c. 800 a. C.). Todos estos textos tratan sobre el teorema de Pitágoras, que parece ser el más antiguo y extendido desarrollo matemático después de la aritmética básica y la geometría.
Tradicionalmente se ha considerado que la matemática, como ciencia, surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.